Displaying similar documents to “Residual a posteriori error estimators for contact problems in elasticity ”

Adaptive finite element methods for elliptic problems: Abstract framework and applications

Serge Nicaise, Sarah Cochez-Dhondt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider a general abstract framework of a continuous elliptic problem set on a Hilbert space that is approximated by a family of (discrete) problems set on a finite-dimensional space of finite dimension not necessarily included into . We give a series of realistic conditions on an error estimator that allows to conclude that the marking strategy of bulk type leads to the geometric convergence of the adaptive algorithm. These conditions are then verified for different concrete...

A posteriori error estimates for the 3 D stabilized Mortar finite element method applied to the Laplace equation

Zakaria Belhachmi (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also...