Displaying similar documents to “Finite difference operators from moving least squares interpolation”

Difference operators from interpolating moving least squares and their deviation from optimality

Thomas Sonar (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.

Korovkin-type convergence results for non-positive operators

Oliver Nowak (2010)

Open Mathematics

Similarity:

Korovkin-type approximation theory usually deals with convergence analysis for sequences of positive operators. In this work we present qualitative Korovkin-type convergence results for a class of sequences of non-positive operators, more precisely regular operators with vanishing negative parts under a limiting process. Sequences of that type are called sequences of almost positive linear operators and have not been studied before in the context of Korovkin-type approximation theory....

A C1-P2 finite element without nodal basis

Shangyou Zhang (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:


A new finite element, which is continuously differentiable, but only piecewise quadratic polynomials on a type of uniform triangulations, is introduced. We construct a local basis which does not involve nodal values nor derivatives. Different from the traditional finite elements, we have to construct a special, averaging operator which is stable and preserves quadratic polynomials. We show the optimal order of approximation of the finite element in interpolation, and in solving ...