Displaying similar documents to “About the domino problem in the hyperbolic plane from an algorithmic point of view”

Plane trivalent trees and their patterns

Charles Delorme (2010)

Open Mathematics

Similarity:

The aim of this paper is to characterize the patterns of successive distances of leaves in plane trivalent trees, and give a very short characterization of their parity pattern. Besides, we count how many trees satisfy some given sequences of patterns.

Properties of triangulations obtained by the longest-edge bisection

Francisco Perdomo, Ángel Plaza (2014)

Open Mathematics

Similarity:

The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the...

The triangles method to build X -trees from incomplete distance matrices

Alain Guénoche, Bruno Leclerc (2001)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

A method to infer X -trees (valued trees having X as set of leaves) from incomplete distance arrays (where some entries are uncertain or unknown) is described. It allows us to build an unrooted tree using only 2 n -3 distance values between the n elements of X , if they fulfill some explicit conditions. This construction is based on the mapping between X -tree and a weighted generalized 2-tree spanning X .