The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mapping theorems on -spaces”

On k -spaces and k R -spaces

Jinjin Li (2005)

Czechoslovak Mathematical Journal

Similarity:

In this note we study the relation between k R -spaces and k -spaces and prove that a k R -space with a σ -hereditarily closure-preserving k -network consisting of compact subsets is a k -space, and that a k R -space with a point-countable k -network consisting of compact subsets need not be a k -space.

k -systems, k -networks and k -covers

Jinjin Li, Shou Lin (2006)

Czechoslovak Mathematical Journal

Similarity:

The concepts of k -systems, k -networks and k -covers were defined by A. Arhangel’skiǐ in 1964, P. O’Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this paper the relationships among k -systems, k -networks and k -covers are further discussed and are established by m k -systems. As applications, some new characterizations of quotients or closed images of locally compact metric spaces are given by means of m k -systems.

On three equivalences concerning Ponomarev-systems

Ying Ge (2006)

Archivum Mathematicum

Similarity:

Let { 𝒫 n } be a sequence of covers of a space X such that { s t ( x , 𝒫 n ) } is a network at x in X for each x X . For each n , let 𝒫 n = { P β : β Λ n } and Λ n be endowed the discrete topology. Put M = { b = ( β n ) Π n Λ n : { P β n } forms a network at some point x b i n X } and f : M X by choosing f ( b ) = x b for each b M . In this paper, we prove that f is a sequentially-quotient (resp. sequence-covering, compact-covering) mapping if and only if each 𝒫 n is a c s * -cover (resp. f c s -cover, c f p -cover) of X . As a consequence of this result, we prove that f is a sequentially-quotient, s -mapping if and...