Displaying similar documents to “Free actions on semiprime rings”

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

On left ( θ , ϕ ) -derivations of prime rings

Mohammad Ashraf (2005)

Archivum Mathematicum

Similarity:

Let R be a 2 -torsion free prime ring. Suppose that θ , φ are automorphisms of R . In the present paper it is established that if R admits a nonzero Jordan left ( θ , θ ) -derivation, then R is commutative. Further, as an application of this resul it is shown that every Jordan left ( θ , θ ) -derivation on R is a left ( θ , θ ) -derivation on R . Finally, in case of an arbitrary prime ring it is proved that if R admits a left ( θ , φ ) -derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal...