Displaying similar documents to “Towards effective dynamics in complex systems by Markov kernel approximation”

Finding metastabilities in reversible Markov chains based on incomplete sampling

Konstantin Fackeldey, Amir Niknejad, Marcus Weber (2017)

Special Matrices

Similarity:

In order to fully characterize the state-transition behaviour of finite Markov chains one needs to provide the corresponding transition matrix P. In many applications such as molecular simulation and drug design, the entries of the transition matrix P are estimated by generating realizations of the Markov chain and determining the one-step conditional probability Pij for a transition from one state i to state j. This sampling can be computational very demanding. Therefore, it is a good...

Theoretical and numerical comparison of some sampling methods for molecular dynamics

Eric Cancès, Frédéric Legoll, Gabriel Stoltz (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The purpose of the present article is to compare different phase-space sampling methods, such as purely stochastic methods (Rejection method, Metropolized independence sampler, Importance Sampling), stochastically perturbed Molecular Dynamics methods (Hybrid Monte Carlo, Langevin Dynamics, Biased Random Walk), and purely deterministic methods (Nosé-Hoover chains, Nosé-Poincaré and Recursive Multiple Thermostats (RMT) methods). After recalling some theoretical convergence properties...

Hit and run as a unifying device

Hans C. Andersen, Persi Diaconis (2007)

Journal de la société française de statistique

Similarity:

We present a generalization of hit and run algorithms for Markov chain Monte Carlo problems that is ‘equivalent’ to data augmentation and auxiliary variables. These algorithms contain the Gibbs sampler and Swendsen-Wang block spin dynamics as special cases. The unification allows theorems, examples, and heuristics developed in one domain to illuminate parallel domains.