Displaying similar documents to “Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model”

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

Similarity:

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method. ...

Modelling of convective phenomena in forest fire.

M.ª Isabel Asensio, Luis Ferragut, Jacques Simon (2002)

RACSAM

Similarity:

We present a model coupling the fire propagation equations in a bidimensional domain representing the surface, and the air movement equations in a three dimensional domain representing an air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional convective model governed by a bidimensional equation verified by a stream function. We also present the numerical simulations of these equations.

BEM and FEM results of displacements in a poroelastic column

Bettina Albers, Stavros A. Savidis, H. Ercan Taşan, Otto von Estorff, Malte Gehlken (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The dynamical investigation of two-component poroelastic media is important for practical applications. Analytic solution methods are often not available since they are too complicated for the complex governing sets of equations. For this reason, often some existing numerical methods are used. In this work results obtained with the finite element method are opposed to those obtained by Schanz using the boundary element method. Not only the influence of the number of elements and time...