The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Clique-connecting forest and stable set polytopes”

All Tight Descriptions of 3-Stars in 3-Polytopes with Girth 5

Oleg V. Borodin, Anna O. Ivanova (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Lebesgue (1940) proved that every 3-polytope P5 of girth 5 has a path of three vertices of degree 3. Madaras (2004) refined this by showing that every P5 has a 3-vertex with two 3-neighbors and the third neighbor of degree at most 4. This description of 3-stars in P5s is tight in the sense that no its parameter can be strengthened due to the dodecahedron combined with the existence of a P5 in which every 3-vertex has a 4-neighbor. We give another tight description of 3-stars in P5s:...

On the Weight of Minor Faces in Triangle-Free 3-Polytopes

Oleg V. Borodin, Anna O. Ivanova (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.