Displaying similar documents to “On the approximation of functions on a Hodge manifold”

Diffusions with measurement errors. I. Local asymptotic normality

Arnaud Gloter, Jean Jacod (2001)

ESAIM: Probability and Statistics

Similarity:

We consider a diffusion process X which is observed at times i / n for i = 0 , 1 , ... , n , each observation being subject to a measurement error. All errors are independent and centered gaussian with known variance ρ n . There is an unknown parameter within the diffusion coefficient, to be estimated. In this first paper the case when X is indeed a gaussian martingale is examined: we can prove that the LAN property holds under quite weak smoothness assumptions, with an explicit limiting Fisher information. What...

On sectioning multiples of the nontrivial line bundle over Grassmannians

Horanská, Ľubomíra

Similarity:

Let G n , k ( G ˜ n , k ) denote the Grassmann manifold of linear k -spaces (resp. oriented k -spaces) in n , d n , k = k ( n - k ) = dim G n , k and suppose n 2 k . As an easy consequence of the Steenrod obstruction theory, one sees that ( d n , k + 1 ) -fold Whitney sum ( d n , k + 1 ) ξ n , k of the nontrivial line bundle ξ n , k over G n , k always has a nowhere vanishing section. The author deals with the following question: What is the least s ( = s n , k ) such that the vector bundle s ξ n , k admits a nowhere vanishing section ? Obviously, s n , k d n , k + 1 , and for the special case in which k = 1 , it is known that s n , 1 = d n , 1 + 1 ....