Displaying similar documents to “Certified metamodels for sensitivity indices estimation”

A comparison of some a posteriori error estimates for fourth order problems

Segeth, Karel

Similarity:

A lot of papers and books analyze analytical a posteriori error estimates from the point of view of robustness, guaranteed upper bounds, global efficiency, etc. At the same time, adaptive finite element methods have acquired the principal position among algorithms for solving differential problems in many physical and technical applications. In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures...

A multi-space error estimation approach for meshfree methods

Rüter, Marcus, Chen, Jiun-Shyan

Similarity:

Error-controlled adaptive meshfree methods are presented for both global error measures, such as the energy norm, and goal-oriented error measures in terms of quantities of interest. The meshfree method chosen in this paper is the reproducing kernel particle method (RKPM), since it is based on a Galerkin scheme and therefore allows extensions of quality control approaches as already developed for the finite element method. Our approach of goal-oriented error estimation is based on the...

Regional observation and sensors

Abdelhaq El Jai, Houria Hamzaoui (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

The purpose of this short paper is to provide original results related to the choice of the number of sensors and their supports for general distributed parameter systems. We introduce the notion of extended sensors and we show that the observation error decreases when the support of a sensor is widened. We also show that the observation error decreases when the number of sensors increases.

Complementarity - the way towards guaranteed error estimates

Vejchodský, Tomáš

Similarity:

This paper presents a review of the complementary technique with the emphasis on computable and guaranteed upper bounds of the approximation error. For simplicity, the approach is described on a numerical solution of the Poisson problem. We derive the complementary error bounds, prove their fundamental properties, present the method of hypercircle, mention possible generalizations and show a couple of numerical examples.

A posteriori error estimation and adaptivity in the method of lines with mixed finite elements

Jan Brandts (1999)

Applications of Mathematics

Similarity:

We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.