The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On commutative rings whose prime ideals are direct sums of cyclics”

Pseudo-valuation rings. II

David F. Anderson, Ayman Badawi, David E. Dobbs (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

Viene data una condizione sufficiente affinchè un sopra-anello di un anello di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se R , M è un PVR, allora ogni sopra-anello di R è un PVR se (e soltanto se) R u è quasi-locale per ciascun elemento u di M : M . Vari risultati sono dimostrati per un ideale primo di un anello commutativo arbitrario R , avente Z R come insieme di zero-divisori. Per esempio, se P è un primo «forte» di R e contiene un elemento non-zero divisore di R , allora P : P è...

Conditions under which R ( x ) and R x are almost Q-rings

Hani A. Khashan, H. Al-Ezeh (2007)

Archivum Mathematicum

Similarity:

All rings considered in this paper are assumed to be commutative with identities. A ring R is a Q -ring if every ideal of R is a finite product of primary ideals. An almost Q -ring is a ring whose localization at every prime ideal is a Q -ring. In this paper, we first prove that the statements, R is an almost Z P I -ring and R [ x ] is an almost Q -ring are equivalent for any ring R . Then we prove that under the condition that every prime ideal of R ( x ) is an extension of a prime ideal of R , the ring R ...

Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In...