Localization and cohomology of nilpotent groups
Peter Hilton (1973)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Peter Hilton (1973)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Israel N. Herstein (1986)
Revista Matemática Iberoamericana
Similarity:
A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent. Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite...
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
Vikas Bist (1991)
Publicacions Matemàtiques
Similarity:
Let U(RG) be the unit group of the group ring RG. Groups G such that U(RG) is FC-nilpotent are determined, where R is the ring of integers Z or a field K of characteristic zero.
Geok Choo Tan (1997)
Publicacions Matemàtiques
Similarity:
Let P be an arbitrary set of primes. The P-nilpotent completion of a group G is defined by the group homomorphism η: G → G where G = inv lim(G/ΓG). Here ΓG is the commutator subgroup [G,G] and ΓG the subgroup [G, ΓG] when i > 2. In this paper, we prove that P-nilpotent completion of an infinitely generated free group F does not induce an isomorphism on the first homology group with Z coefficients. Hence, P-nilpotent completion is not idempotent. Another important consequence of...
Ian Hawthorn (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.
Ernest Płonka (1974)
Colloquium Mathematicae
Similarity:
Srinivasan, S. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Lewis, Robert H., Moore, Guy D. (1997)
Experimental Mathematics
Similarity:
Hilton, Peter, Militello, Robert (1996)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ian Stewart (1977)
Fundamenta Mathematicae
Similarity: