Displaying similar documents to “Unconditional nonlinear exponential stability in the Bénard problem for a mixture: necessary and sufficient conditions”

Unconditional nonlinear stability in a polarized dielectric liquid

Giuseppe Mulone, Salvatore Rionero, Brian Straughan (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We derive a very sharp nonlinear stability result for the problem of thermal convection in a layer of dielectric fluid subject to an alternating current (AC). It is particularly important to note that the size of the initial energy in which we establish global nonlinear stability is not restricted whatsoever, and the Rayleigh-Roberts number boundary coincides with that found by a formal linear instability analysis.

Exponential stability of nonlinear non-autonomous multivariable systems

Michael I. Gil' (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We consider nonlinear non-autonomous multivariable systems governed by differential equations with differentiable linear parts. Explicit conditions for the exponential stability are established. These conditions are formulated in terms of the norms of the derivatives and eigenvalues of the variable matrices, and certain scalar functions characterizing the nonlinearity. Moreover, an estimate for the solutions is derived. It gives us a bound for the region of attraction of the steady...

Convective Instability of Reaction Fronts in Porous Media

K. Allali, A. Ducrot, A. Taik, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We study the influence of natural convection on stability of reaction fronts in porous media. The model consists of the heat equation, of the equation for the depth of conversion and of the equations of motion under the Darcy law. Linear stability analysis of the problem is fulfilled, the stability boundary is found. Direct numerical simulations are performed and compared with the linear stability analysis.