Displaying similar documents to “Quasilinear hyperbolic equations with hysteresis”

Resonance in Preisach systems

Pavel Krejčí (2000)

Applications of Mathematics

Similarity:

This paper deals with the asymptotic behavior as t of solutions u to the forced Preisach oscillator equation w ¨ ( t ) + u ( t ) = ψ ( t ) , w = u + 𝒫 [ u ] , where 𝒫 is a Preisach hysteresis operator, ψ L ( 0 , ) is a given function and t 0 is the time variable. We establish an explicit asymptotic relation between the Preisach measure and the function ψ (or, in a more physical terminology, a balance condition between the hysteresis dissipation and the external forcing) which guarantees that every solution remains bounded for all times. Examples...

Well-posedness and regularity for a parabolic-hyperbolic Penrose-Fife phase field system

Elisabetta Rocca (2005)

Applications of Mathematics

Similarity:

This work is concerned with the study of an initial boundary value problem for a non-conserved phase field system arising from the Penrose-Fife approach to the kinetics of phase transitions. The system couples a nonlinear parabolic equation for the absolute temperature with a nonlinear hyperbolic equation for the phase variable χ , which is characterized by the presence of an inertial term multiplied by a small positive coefficient μ . This feature is the main consequence of supposing...

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

Similarity:

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model is that...

Evolution equations with parameter in the hyperbolic case

Jan Bochenek, Teresa Winiarska (1996)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter h Ω m in the “hyperbolic” case.