Displaying similar documents to “The continuum reaction-diffusion limit of a stochastic cellular growth model”

Dynamics of Erythroid Progenitors and Erythroleukemia

N. Bessonov, F. Crauste, I. Demin, V. Volpert (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

The paper is devoted to mathematical modelling of erythropoiesis, production of red blood cells in the bone marrow. We discuss intra-cellular regulatory networks which determine self-renewal and differentiation of erythroid progenitors. In the case of excessive self-renewal, immature cells can fill the bone marrow resulting in the development of leukemia. We introduce a parameter characterizing the strength of mutation. Depending on its value, leukemia will or will not develop. ...

Influence of diffusion on interactions between malignant gliomas and immune system

Urszula Foryś (2010)

Applicationes Mathematicae

Similarity:

We analyse the influence of diffusion and space distribution of cells in a simple model of interactions between an activated immune system and malignant gliomas, among which the most aggressive one is GBM Glioblastoma Multiforme. It turns out that diffusion cannot affect stability of spatially homogeneous steady states. This suggests that there are two possible outcomes-the solution is either attracted by the positive steady state or by the semitrivial one. The semitrivial steady state...

On Chemotaxis Models with Cell Population Interactions

Z. A. Wang (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are...