Displaying similar documents to “Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem”

Weak solutions for a fluid-elastic structure interaction model.

Benoit Desjardins, María J. Esteban, Céline Grandmont, Patrick Le Tallec (2001)

Revista Matemática Complutense

Similarity:

The purpose of this paper is to study a model coupling an incompressible viscous fiuid with an elastic structure in a bounded container. We prove the existence of weak solutions à la Leray as long as no collisions occur.

On the exterior steady problem for the equations of a viscous isothermal gas

Mariarosaria Padula (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density ϱ , moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small.

Incompressible flow around thin obstacle, uniqueness for the wortex-wave system

Christophe Lacave (2009)

Journées Équations aux dérivées partielles

Similarity:

We present here the results concerning the influence of a thin obstacle on the behavior of incompressible flow. We extend the works made by Itimie, Lopes Filho, Nussenzveig Lopes and Kelliher where they consider that the obstacle shrinks to a point. We begin by working in two-dimension, and thanks to complex analysis we treat the case of ideal and viscous flows around a curve. Next, we consider three-dimensional viscous flow in the exterior of a surface/curve. We finish by giving uniqueness...

Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions

David Hoff (2001)

Journées équations aux dérivées partielles

Similarity:

We prove the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time, more rapidly for larger acoustic speeds...