Displaying similar documents to “Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem”

Shape optimization in contact problems based on penalization of the state inequality

Jaroslav Haslinger, Pekka Neittaanmäki, Timo Tiihonen (1986)

Aplikace matematiky

Similarity:

The paper deals with the approximation of optimal shape of elastic bodies, unilaterally supported by a rigid, frictionless foundation. Original state inequality, describing the behaviour of such a body is replaced by a family of penalized state problems. The relation between optimal shapes for the original state inequality and those for penalized state equations is established.

Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method

Jindřich Nečas, Ivan Hlaváček (1983)

Aplikace matematiky

Similarity:

A problem of unilateral contact between an elasto-plastic body and a rigid frictionless foundation is solved within the range of the so called deformation theory of plasticity. The weak solution is defined by means of a variational inequality. Then the so called secant module (Kačanov's) iterative method is introduced, each step of which corresponds to a Signorini's problem of elastoplastics. The convergence of the method is proved on an abstract level.

Optimal control problems for variational inequalities with controls in coefficients and in unilateral constraints

Igor Bock, Ján Lovíšek (1987)

Aplikace matematiky

Similarity:

We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable.