Displaying similar documents to “Spectral Multiplicity of Certain Gaussian Processes”

On the tails of the distribution of the maximum of a smooth stationary Gaussian process

Jean-Marc Azaïs, Jean-Marc Bardet, Mario Wschebor (2010)

ESAIM: Probability and Statistics

Similarity:

We study the tails of the distribution of the maximum of a stationary Gaussian process on a bounded interval of the real line. Under regularity conditions including the existence of the spectral moment of order , we give an additional term for this asymptotics. This widens the application of an expansion given originally by Piterbarg [CITE] for a sufficiently small interval.

On small deviations of Gaussian processes using majorizing measures

Michel J. G. Weber (2012)

Colloquium Mathematicae

Similarity:

We give two examples of periodic Gaussian processes, having entropy numbers of exactly the same order but radically different small deviations. Our construction is based on Knopp's classical result yielding existence of continuous nowhere differentiable functions, and more precisely on Loud's functions. We also obtain a general lower bound for small deviations using the majorizing measure method. We show by examples that our bound is sharp. We also apply it to Gaussian independent sequences...

Explicit Karhunen-Loève expansions related to the Green function of the Laplacian

J.-R. Pycke (2006)

Banach Center Publications

Similarity:

Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.