The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Solution of the Dirichlet problem with l^p boundary condition”

A remark on product of Dirichlet L-functions

Kirti Joshi, C. S. Yogananda (1999)

Acta Arithmetica

Similarity:

While trying to understand the methods and the results of [3], especially in Section 2, we stumbled on an identity (*) below, which looked worth recording since we could not locate it in the literature. We would like to thank Dinesh Thakur and Dipendra Prasad for their comments.

Neumann problem for one-dimensional nonlinear thermoelasticity

Yoshihiro Shibata (1992)

Banach Center Publications

Similarity:

The global existence theorem of classical solutions for one-dimensional nonlinear thermoelasticity is proved for small and smooth initial data in the case of a bounded reference configuration for a homogeneous medium, considering the Neumann type boundary conditions: traction free and insulated. Moreover, the asymptotic behaviour of solutions is investigated.