Curvature tensor of pseudo metric semi-symmetric connexions in an almost contact metric manifold.
A. Sharfuddin, S.I. Husain (1978)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
A. Sharfuddin, S.I. Husain (1978)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Füsun Özen Zengin, S. Aynur Uysal, Sezgin Altay Demirbag (2011)
Annales Polonici Mathematici
Similarity:
We prove that if the sectional curvature of an n-dimensional pseudo-symmetric manifold with semi-symmetric metric connection is independent of the orientation chosen then the generator of such a manifold is gradient and also such a manifold is subprojective in the sense of Kagan.
Mondal, A.K., De, U.C., Özgür, C. (2010)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Bagewadi, C.S., Prakasha, D.G., Venkatesha (2007)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Ahmet Yücesan, Nihat Ayyildiz (2008)
Archivum Mathematicum
Similarity:
We derive the equations of Gauss and Weingarten for a non-degenerate hypersurface of a semi-Riemannian manifold admitting a semi-symmetric metric connection, and give some corollaries of these equations. In addition, we obtain the equations of Gauss curvature and Codazzi-Mainardi for this non-degenerate hypersurface and give a relation between the Ricci and the scalar curvatures of a semi-Riemannian manifold and of its a non-degenerate hypersurface with respect to a semi-symmetric metric...
Kyong T. Hahn (1981)
Annales Polonici Mathematici
Similarity:
David E. Blair (2013)
Publications de l'Institut Mathématique
Similarity:
Tripathi, Mukut Mani, Kılıç, Erol, Perktaş, Selcen Yüksel, Keleş, Sadık (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Das, Lovejoy (2007)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Vishnuvardhana S.V. Venkatesha (2015)
Communications in Mathematics
Similarity:
In the present paper we have obtained the necessary condition for the existence of almost pseudo symmetric and almost pseudo Ricci symmetric Sasakian manifold admitting a type of quarter symmetric metric connection.
Zbigniew Olszak (2013)
Publications de l'Institut Mathématique
Similarity: