On sets of positive measure under certain transformations
A. K. Mookhopadhyaya (1964)
Matematički Vesnik
Similarity:
A. K. Mookhopadhyaya (1964)
Matematički Vesnik
Similarity:
Marcin E. Kuczma (1976)
Colloquium Mathematicae
Similarity:
G. Hjorth (2001)
Fundamenta Mathematicae
Similarity:
The classification problem for measure preserving transformations is strictly more complicated than that of graph isomorphism.
J. D. Emery, P. Szeptycki (1973)
Annales Polonici Mathematici
Similarity:
Paweł Góra (1989)
Banach Center Publications
Similarity:
Tudor Pădurariu, Cesar E. Silva, Evangelie Zachos (2015)
Colloquium Mathematicae
Similarity:
For each vector v we define the notion of a v-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be (1,2)-positive type. We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.
Mukul Pal, Mrityunjoy Nath (1999)
Czechoslovak Mathematical Journal
Similarity:
Kitaev, A.V. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Jack Clark, Karl David (1981)
Aequationes mathematicae
Similarity:
Roland Zweimüller (2008)
Colloquium Mathematicae
Similarity:
For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.
Mohamed, Hesham Abdelmoez (2000)
Journal for Geometry and Graphics
Similarity:
Leo S. Bleicher (2004)
Visual Mathematics
Similarity:
Gerhard Keller (1978)
Publications mathématiques et informatique de Rennes
Similarity:
A. Iwanik (1992)
Aequationes mathematicae
Similarity: