### Projections of knots

Dennis Roseman (1975)

Fundamenta Mathematicae

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Dennis Roseman (1975)

Fundamenta Mathematicae

Similarity:

Schmitt, Peter (1997)

Beiträge zur Algebra und Geometrie

Similarity:

P. V. Koseleff, D. Pecker (2014)

Banach Center Publications

Similarity:

We show that every knot can be realized as a billiard trajectory in a convex prism. This proves a conjecture of Jones and Przytycki.

Hendricks, Jacob (2004)

Algebraic & Geometric Topology

Similarity:

Mulazzani, Michele (2006)

Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]

Similarity:

Skip Pennock (2004)

Visual Mathematics

Similarity:

Perko, Kenneth A. jr. (1979)

Portugaliae mathematica

Similarity:

Monica Meissen (1998)

Banach Center Publications

Similarity:

The minimal number of edges required to form a knot or link of type K is the edge number of K, and is denoted e(K). When knots are drawn with edges, they are appropriately called piecewise-linear or PL knots. This paper presents some edge number results for PL knots. Included are illustrations of and integer coordinates for the vertices of several prime PL knots.

Kuniaki Horie, Mitsuko Horie (2003)

Acta Arithmetica

Similarity:

Ying-Qing Wu (1993)

Mathematische Annalen

Similarity:

S. Jablan, R. Sazdanovic (2003)

Visual Mathematics

Similarity:

Richard Hartley (1980)

Mathematische Zeitschrift

Similarity:

Dugopolski, Mark J. (1985)

International Journal of Mathematics and Mathematical Sciences

Similarity:

(2014)

Banach Center Publications

Similarity: