Error bounds for Newton's method under a weak Kantorovich-type hypothesis.
Argyros, Ioannis K. (2002)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Argyros, Ioannis K. (2002)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich hypothesis (15) has been used for a long time as a sufficient condition for convergence of Newton's method to a locally unique solution of a nonlinear equation in a Banach space setting. Recently in [3], [4] we showed that this hypothesis can always be replaced by a condition weaker in general (see (18), (19) or (20)) whose verification requires the same computational cost. Moreover, finer error bounds and at least as precise information on the location of the...
Tetsuro Yamamoto (1986)
Numerische Mathematik
Similarity:
Ioannis K. Argyros (2007)
Applicationes Mathematicae
Similarity:
We answer a question posed by Cianciaruso and De Pascale: What is the exact size of the gap between the semilocal convergence domains of the Newton and the modified Newton method? In particular, is it possible to close it? Our answer is yes in some cases. Using some ideas of ours and more precise error estimates we provide a semilocal convergence analysis for both methods with the following advantages over earlier approaches: weaker hypotheses; finer error bounds on the distances involved,...
Tetsuro Yamamoto (1986)
Numerische Mathematik
Similarity:
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to ...
Ioannis K. Argyros (2006)
Applicationes Mathematicae
Similarity:
The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical...
Ioannis K. Argyros, Saïd Hilout (2010)
Applicationes Mathematicae
Similarity:
We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore,...
Argyros, Ioannis K.I. (1998)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...
Argyros, Ioannis K. (2003)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein...