### On convergence of derivatives of linear combinations of modified Lupas operators.

Agrawal, P.N., Gupta, Vijay, Sahai, A. (1989)

Publications de l'Institut Mathématique. Nouvelle Série

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Agrawal, P.N., Gupta, Vijay, Sahai, A. (1989)

Publications de l'Institut Mathématique. Nouvelle Série

Similarity:

Bogdan Rzepecki (1987)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Vladimir Janković (1998)

The Teaching of Mathematics

Similarity:

Ilija Lazarević, Alexandru Lupas (1975)

Publications de l'Institut Mathématique

Similarity:

Jemal Peradze (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by...

Ondřej Došlý, Jaroslav Jaroš (2003)

Archivum Mathematicum

Similarity:

We extend the classical Leighton comparison theorem to a class of quasilinear forced second order differential equations $$\left(r\left(t\right)\right|{x}^{\text{'}}{|}^{\alpha -2}{x}^{\text{'}}{)}^{\text{'}}+c\left(t\right){\left|x\right|}^{\beta -2}x=f\left(t\right)\phantom{\rule{0.166667em}{0ex}},\phantom{\rule{1.0em}{0ex}}1<\alpha \le \beta ,\phantom{\rule{4pt}{0ex}}t\in I=(a,b)\phantom{\rule{0.166667em}{0ex}},\phantom{\rule{2.0em}{0ex}}(*)$$ where the endpoints $a$, $b$ of the interval $I$ are allowed to be singular. Some applications of this statement in the oscillation theory of (*) are suggested.

František Neuman (1967)

Archivum Mathematicum

Similarity:

Bouziani, Abdelfatah (2002)

International Journal of Mathematics and Mathematical Sciences

Similarity: