Continuously removable sets for quasiconformal mappings.
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
V. P. Mićić (1972)
Matematički Vesnik
Similarity:
González, María J., Nicolau, Artur (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Gutlyanskij, V.Ya., Ryazanov, V.I. (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Reich, Edgar (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Matti Vuorinen (1990)
Mathematische Zeitschrift
Similarity:
Strebel, Kurt (1998)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
J. Ławrynowicz (1968)
Annales Polonici Mathematici
Similarity:
Reiner Kühnau (2011)
Annales UMCS, Mathematica
Similarity:
We study a dual analogue of the class Σ(κ) of hydrodynamically normalized schlicht conformal mappings g(z) of the exterior of the unit circle with a [...] -quasiconformal extension, namely now those (non-schlicht) mappings g(z) for which g(z) has such a quasiconformal extension.
Luděk Kleprlík (2014)
Open Mathematics
Similarity:
Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
Xinzhong Huang (2014)
Annales Polonici Mathematici
Similarity:
We give a Hölder type estimate for normalized ρ-quasisymmetric functions, improving some results of J. Zając.
A. Pierzchalski (1987)
Banach Center Publications
Similarity:
Pekka Koskela (1994)
Revista Matemática Iberoamericana
Similarity:
We establish an inverse Sobolev lemma for quasiconformal mappings and extend a weaker version of the Sobolev lemma for quasiconformal mappings of the unit ball of R to the full range 0 < p < n. As an application we obtain sharp integrability theorems for the derivative of a quasiconformal mapping of the unit ball of R in terms of the growth of the mapping.