Displaying similar documents to “Graph equations, graph inequalities and a fixed point theorem.”

The periphery graph of a median graph

Boštjan Brešar, Manoj Changat, Ajitha R. Subhamathi, Aleksandra Tepeh (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are...

Note on enumeration of labeled split graphs

Vladislav Bína, Jiří Přibil (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper brings explicit formula for enumeration of vertex-labeled split graphs with given number of vertices. The authors derive this formula combinatorially using an auxiliary assertion concerning number of split graphs with given clique number. In conclusion authors discuss enumeration of vertex-labeled bipartite graphs, i.e., a graphical class defined in a similar manner to the class of split graphs.

Characterizations of the Family of All Generalized Line Graphs-Finite and Infinite-and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2

Gurusamy Rengasamy Vijayakumar (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented...

The Existence Of P≥3-Factor Covered Graphs

Sizhong Zhou, Jiancheng Wu, Tao Zhang (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A spanning subgraph F of a graph G is called a P≥3-factor of G if every component of F is a path of order at least 3. A graph G is called a P≥3-factor covered graph if G has a P≥3-factor including e for any e ∈ E(G). In this paper, we obtain three sufficient conditions for graphs to be P≥3-factor covered graphs. Furthermore, it is shown that the results are sharp.

A Note on Total Graphs

S.F. Forouhandeh, N. Jafari Rad, B.H. Vaqari Motlagh, H.P. Patil, R. Pandiya Raj (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Erratum Identification and corrections of the existing mistakes in the paper On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory 33 (2013) 361-371.

Regularity and Planarity of Token Graphs

Walter Carballosa, Ruy Fabila-Monroy, Jesús Leaños, Luis Manuel Rivera (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V, E) be a graph of order n and let 1 ≤ k < n be an integer. The k-token graph of G is the graph whose vertices are all the k-subsets of V, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. In this paper we characterize precisely, for each value of k, which graphs have a regular k-token graph and which connected graphs have a planar k-token graph.

α-Labelings of a Class of Generalized Petersen Graphs

Anna Benini, Anita Pasotti (2015)

Discussiones Mathematicae Graph Theory

Similarity:

An α-labeling of a bipartite graph Γ of size e is an injective function f : V (Γ) → {0, 1, 2, . . . , e} such that {|ƒ(x) − ƒ(y)| : [x, y] ∈ E(Γ)} = {1, 2, . . . , e} and with the property that its maximum value on one of the two bipartite sets does not reach its minimum on the other one. We prove that the generalized Petersen graph PSn,3 admits an α-labeling for any integer n ≥ 1 confirming that the conjecture posed by Vietri in [10] is true. In such a way we obtain an infinite class...