Displaying similar documents to “Characteristic matrix functions on Wachs spaces, I. (Livsits definition).”

Squaring a reverse AM-GM inequality

Minghua Lin (2013)

Studia Mathematica

Similarity:

Let A, B be positive operators on a Hilbert space with 0 < m ≤ A, B ≤ M. Then for every unital positive linear map Φ, Φ²((A + B)/2) ≤ K²(h)Φ²(A ♯ B), and Φ²((A+B)/2) ≤ K²(h)(Φ(A) ♯ Φ(B))², where A ♯ B is the geometric mean and K(h) = (h+1)²/(4h) with h = M/m.

A class of generalized-Hilbert-Schmidt operators

B. E. Rhoades (1975)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

G. H. Constantin ha definito una classe di operatori di Cesàro-Hilbert-Schmidt. In questa Nota l'Autore trova la corrispondente proprietà per una più generale classe di operatori di Hilbert-Schmidt (G. H. S.).

Perturbations of operators similar to contractions and the commutator equation

C. Badea (2002)

Studia Mathematica

Similarity:

Let T and V be two Hilbert space contractions and let X be a linear bounded operator. It was proved by C. Foiaş and J. P. Williams that in certain cases the operator block matrix R(X;T,V) (equation (1.1) below) is similar to a contraction if and only if the commutator equation X = TZ-ZV has a bounded solution Z. We characterize here the similarity to contractions of some operator matrices R(X;T,V) in terms of growth conditions or of perturbations of R(0;T,V) = T ⊕ V.