Functional equations related to non-additive information measures
A. Kamiński, P. N. Rathie, Lilian T. Sheng (1984)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Kamiński, P. N. Rathie, Lilian T. Sheng (1984)
Annales Polonici Mathematici
Similarity:
Daróczy, Zoltán (1999)
Mathematica Pannonica
Similarity:
Palaniappan Kannappan (1995)
Mathware and Soft Computing
Similarity:
Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.
Thomas Riedel, Prasanna K. Sahoo (1997)
Aequationes mathematicae
Similarity:
P. Kannappan, C. T. Ng (1974)
Annales Polonici Mathematici
Similarity:
P. Kannappan, P. N. Rathie (1972)
Annales Polonici Mathematici
Similarity:
Kannappan, PL., Sahoo, P.K. (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
K. Urbanik (1957)
Colloquium Mathematicum
Similarity:
N. G. de Bruijn (1966)
Colloquium Mathematicae
Similarity:
Ferreira, A.V. (1967)
Portugaliae mathematica
Similarity:
D. Czaja-Pośpiech, M. Kuczma (1970)
Annales Polonici Mathematici
Similarity:
H. Światak (1970)
Annales Polonici Mathematici
Similarity: