Discussing graph theory with a computer. II: Theorems suggested by the computer.
Cvetkovic, Dragos M. (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Cvetkovic, Dragos M. (1983)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Petrović, Miroslav (1991)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
D. Cvetković (2005)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Torgašev, Aleksandar (1992)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Abdollahi, A., Vatandoost, E. (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ying Liu (2013)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number...
Sander, Torsten (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Cvetković, D., Rowlinson, P. (1988)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Bojan Mohar, Svatopluk Poljak (1990)
Czechoslovak Mathematical Journal
Similarity:
Dragoš Cvetković, Mirko Lepović (2005)
Publications de l'Institut Mathématique
Similarity:
X. Shen, Y. Hou, I. Gutman, X. Hui (2010)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
H. S. Ramane, D. S. Revankar, I. Gutman, H. B. Walikar (2009)
Publications de l'Institut Mathématique
Similarity: