The hereditary classes of mappings
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
Janusz Jerzy Charatonik (1991)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Interrelations between three concepts of terminal continua and their behaviour, when the underlying continuum is confluently mapped, are studied.
S. Drobot (1971)
Applicationes Mathematicae
Similarity:
George W. Henderson (1971)
Colloquium Mathematicae
Similarity:
J. Krasinkiewicz (1974)
Fundamenta Mathematicae
Similarity:
Charatonik, Janusz J. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Sergio Macías, Patricia Pellicer-Covarrubias (2012)
Colloquium Mathematicae
Similarity:
We continue the study of 1/2-homogeneity of the hyperspace suspension of continua. We prove that if X is a decomposable continuum and its hyperspace suspension is 1/2-homogeneous, then X must be continuum chainable. We also characterize 1/2-homogeneity of the hyperspace suspension for several classes of continua, including: continua containing a free arc, atriodic and decomposable continua, and decomposable irreducible continua about a finite set.
D. E. Bennett, J. B. Fugate
Similarity:
CONTENTSIntroduction......................................................................................................................................... 5Preliminaries...................................................................................................................................... 6Chapter I. Basic types and properties of non-separating continua......................................... 7 Terminal and end continua............................................................................................................
T. Maćkowiak (1977)
Fundamenta Mathematicae
Similarity:
J. Grispolakis, E. D. Tymchatyn (1979)
Colloquium Mathematicae
Similarity:
David Ryden (2000)
Fundamenta Mathematicae
Similarity:
A procedure for obtaining points of irreducibility for an inverse limit on intervals is developed. In connection with this, the following are included. A semiatriodic continuum is defined to be a continuum that contains no triod with interior. Characterizations of semiatriodic and unicoherent continua are given, as well as necessary and sufficient conditions for a subcontinuum of a semiatriodic and unicoherent continuum M to lie within the interior of a proper subcontinuum of M. ...
J. Krasinkiewicz (1974)
Fundamenta Mathematicae
Similarity: