Some differential operators connected with quasiconformal deformations on manifold
A. Pierzchalski (1987)
Banach Center Publications
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Pierzchalski (1987)
Banach Center Publications
Similarity:
Reich, Edgar (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Gong, Jianhua (2008)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Reiner Kühnau (2011)
Annales UMCS, Mathematica
Similarity:
We study a dual analogue of the class Σ(κ) of hydrodynamically normalized schlicht conformal mappings g(z) of the exterior of the unit circle with a [...] -quasiconformal extension, namely now those (non-schlicht) mappings g(z) for which g(z) has such a quasiconformal extension.
V. P. Mićić (1972)
Matematički Vesnik
Similarity:
Pekka Koskela (1994)
Revista Matemática Iberoamericana
Similarity:
We establish an inverse Sobolev lemma for quasiconformal mappings and extend a weaker version of the Sobolev lemma for quasiconformal mappings of the unit ball of R to the full range 0 < p < n. As an application we obtain sharp integrability theorems for the derivative of a quasiconformal mapping of the unit ball of R in terms of the growth of the mapping.
Tyutyuev, A.V., Shlyk, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Kovalev, Leonid V. (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Kühnau, Reiner (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Krushkal, Samuel L. (1995)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Matsuzaki, Katsuhiko (1995)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Keiichi Shibata (1996)
Banach Center Publications
Similarity:
Solutions to Beltrami differential equation with prescribed boundary correspondence in some plane domains are given.