Displaying similar documents to “Stokes flow past a sphere with a source at its centre”

On using artificial compressibility method for solving turbulent flows

Louda, Petr, Kozel, Karel, Příhoda, Jaromír

Similarity:

In this work, artificial compressibility method is used to solve steady and unsteady flows of viscous incompressible fluid. The method is based on implicit higher order upwind discretization of Navier-Stokes equations. The extension for unsteady simulation is considered by increasing artificial compressibility parameter or by using dual time stepping. The methods are tested on laminar flow around circular cylinder and used to simulate turbulent unsteady flows by URANS approach. The simulated...

Isogeometric analysis for fluid flow problems

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Michálková, Kristýna, Turnerová, Eva

Similarity:

The article is devoted to the simulation of viscous incompressible fluid flow based on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical approach. Primary goal of using isogemetric analysis is to be always geometrically exact, independently of the discretization, and to avoid a time-consuming generation of meshes of computational domains. For higher Reynolds numbers, we use stabilization techniques SUPG and PSPG. All methods mentioned in the paper are...

On mathematical modelling of gust response using the finite element method

Sváček, Petr, Horáček, Jaromír

Similarity:

In this paper the numerical approximation of aeroelastic response to sudden gust is presented. The fully coupled formulation of two dimensional incompressible viscous fluid flow over a flexibly supported structure is used. The flow is modelled with the system of Navier-Stokes equations written in Arbitrary Lagrangian-Eulerian form and coupled with system of ordinary differential equations describing the airfoil vibrations with two degrees of freedom. The Navier-Stokes equations are spatially...

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

On the existence of pullback attractor for a two-dimensional shear flow with Tresca's boundary condition

Mahdi Boukrouche, Grzegorz Łukaszewicz (2008)

Banach Center Publications

Similarity:

We consider a two-dimensional Navier-Stokes shear flow with time dependent boundary driving and subject to Tresca law. We establish the existence of a unique global in time solution and then, using a recent method based on the concept of the Kuratowski measure of noncompactness of a bounded set, we prove the existence of the pullback attractor for the associated cocycle. This research is motivated by a problem from lubrication theory.

Analytical solution of rotationally symmetric Stokes flow near corners

Burda, Pavel, Novotný, Jaroslav, Šístek, Jakub

Similarity:

We present analytical solution of the Stokes problem in rotationally symmetric domains. This is then used to find the asymptotic behaviour of the solution in the vicinity of corners, also for Navier-Stokes equations. We apply this to construct very precise numerical finite element solution.