A theory of extensions of map-systems I
W. Słowikowski (1959)
Fundamenta Mathematicae
Similarity:
W. Słowikowski (1959)
Fundamenta Mathematicae
Similarity:
Paweł Szeptycki (1975)
Studia Mathematica
Similarity:
A. Błaszczyk, U. Lorek (1978)
Colloquium Mathematicae
Similarity:
T. K. Pal, M. Maiti, J. Achari (1976)
Matematički Vesnik
Similarity:
W. Słowikowski (1966)
Studia Mathematica
Similarity:
D. W. Hajek (1986)
Matematički Vesnik
Similarity:
H. A. Antosiewicz, A. Cellina (1977)
Annales Polonici Mathematici
Similarity:
Aarts J. M. (1971)
Colloquium Mathematicum
Similarity:
Ky Fan (1969)
Mathematische Zeitschrift
Similarity:
M. R. Koushesh
Similarity:
Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...
Otto Endler (1975)
Manuscripta mathematica
Similarity:
Eggert Briem (1981)
Mathematische Zeitschrift
Similarity:
Paul Monsky (1987)
Mathematische Zeitschrift
Similarity: