Computer graphics and a new Gibbs phenomenon for Fourier-Bessel series.
Gray, Alfred, Pinsky, Mark A. (1992)
Experimental Mathematics
Similarity:
Gray, Alfred, Pinsky, Mark A. (1992)
Experimental Mathematics
Similarity:
M. Bożejko, T. Pytlik (1972)
Colloquium Mathematicae
Similarity:
M. Mathias (1923)
Mathematische Zeitschrift
Similarity:
R. Taberski (1966)
Colloquium Mathematicae
Similarity:
J. J. Duistermaat (1973)
Recherche Coopérative sur Programme n°25
Similarity:
Raimond Struble (1984)
Studia Mathematica
Similarity:
Richard M. Aron, David Pérez-García, Juan B. Seoane-Sepúlveda (2006)
Studia Mathematica
Similarity:
We show that, given a set E ⊂ 𝕋 of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t ∈ E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of 𝓒(𝕋) every non-zero element of which has a Fourier series expansion divergent in E.
Zhang, Qing-Hua, Chen, Shuiming, Qu, Yuanyuan (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
T. W. Körner (1981)
Colloquium Mathematicae
Similarity:
(1970)
Czechoslovak Mathematical Journal
Similarity:
Beriša, Muharem C. (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Fitouhi, Ahmed, Bettaibi, Néji, Bettaieb, Rym H., Binous, Wafa (2008)
International Journal of Mathematics and Mathematical Sciences
Similarity:
R. Bhuvaneswari, V. Karunakaran (2010)
Annales UMCS, Mathematica
Similarity:
Function spaces of type S are introduced and investigated in the literature. They are also applied to study the Cauchy problem. In this paper we shall extend the concept of these spaces to the context of Boehmian spaces and study the Fourier transform theory on these spaces. These spaces enable us to combine the theory of Fourier transform on these function spaces as well as their dual spaces.