The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “S-disjunctive elements of a Rees matrix semigroup over a monoid”

Universal bounds for positive matrix semigroups

Leo Livshits, Gordon MacDonald, Laurent Marcoux, Heydar Radjavi (2016)

Studia Mathematica

Similarity:

We show that any compact semigroup of positive n × n matrices is similar (via a positive diagonal similarity) to a semigroup bounded by √n. We give examples to show this bound is best possible. We also consider the effect of additional conditions on the semigroup and obtain improved bounds in some cases.

Wreath product of a semigroup and a Γ-semigroup

Mridul K. Sen, Sumanta Chattopadhyay (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let S = {a,b,c,...} and Γ = {α,β,γ,...} be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.