Regular and coregular mappings of differential spaces
W. Waliszewski (1975)
Annales Polonici Mathematici
Similarity:
W. Waliszewski (1975)
Annales Polonici Mathematici
Similarity:
J. Jaworowski (1958)
Fundamenta Mathematicae
Similarity:
E. V. Shchepin (1986)
Banach Center Publications
Similarity:
Guy David, Stephen Semmes (2000)
Publicacions Matemàtiques
Similarity:
The notions of Lipschitz and bilipschitz mappings provide classes of mappings connected to the geometry of metric spaces in certain ways. A notion between these two is given by regular mappings (reviewed in Section 1), in which some non-bilipschitz behavior is allowed, but with limitations on this, and in a quantitative way. In this paper we look at a class of mappings called (s, t)-. These mappings are the same as ordinary regular mappings when s = t, but otherwise they behave somewhat...
I. L. Reilly, M. K. Vamanamurthy (1983)
Matematički Vesnik
Similarity:
Zdeněk Frolík (1961)
Czechoslovak Mathematical Journal
Similarity:
Joachim N. Grispolakis (1978)
Colloquium Mathematicae
Similarity:
M. Altman (1970)
Fundamenta Mathematicae
Similarity:
Betten, Anton, Betten, Dieter (1997)
Beiträge zur Algebra und Geometrie
Similarity: