Displaying similar documents to “Ultra-b-barrelled spaces and the completeness of L b ( E , F )

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

Similarity:

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from...

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Similarity:

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

Remarks on flat and differential K -theory

Man-Ho Ho (2014)

Annales mathématiques Blaise Pascal

Similarity:

In this note we prove some results in flat and differential K -theory. The first one is a proof of the compatibility of the differential topological index and the flat topological index by a direct computation. The second one is the explicit isomorphisms between Bunke-Schick differential K -theory and Freed-Lott differential K -theory.

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight...

Remarks on 𝒮 -Closedness in Topological Spaces

Zbigniew Duszyński (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

Corresponding to [27], some properties of S-closed subspaces and subsets 𝒮 -closed relative to a topological space are proved. Conditions under which mappings preserve certain 𝒮 -closed subspaces are investigated.