The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The automorphism groups of domains and the isometry groups of manifolds”

On Compact Complex Manifolds with Finite Automorphism Group

Konrad Czaja (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is known that compact complex manifolds of general type and Kobayashi hyperbolic manifolds have finite automorphism groups. We give criteria for finiteness of the automorphism group of a compact complex manifold which allow us to produce large classes of compact complex manifolds with finite automorphism group but which are neither of general type nor Kobayashi hyperbolic.

Finite-finitary, polycyclic-finitary and Chernikov-finitary automorphism groups

B. A. F. Wehrfritz (2015)

Colloquium Mathematicae

Similarity:

If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case...