On the growth of entire functions of n complex variables
Małgorzata Downarowicz, Adam Janik (1985)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Małgorzata Downarowicz, Adam Janik (1985)
Annales Polonici Mathematici
Similarity:
Q. I. Rahman (1965)
Annales Polonici Mathematici
Similarity:
P. K. Kamthan, P. K. Jain (1969)
Annales Polonici Mathematici
Similarity:
S. K. Bajpai, S. K. Singh-Gautam, S. S. Bajpai (1980)
Annales Polonici Mathematici
Similarity:
S. K. Vaish, H. S. Kasana (1982)
Publications de l'Institut Mathématique
Similarity:
Domar, Yngve (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Fricke, G.H., Roy, Ranjan, Shah, S.M. (1981)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Paul Wild (1987)
Numerische Mathematik
Similarity:
Stefan Halvarsson (1996)
Annales Polonici Mathematici
Similarity:
We study the growth of parameter-dependent entire functions. We are mainly interested in the case where the functions depend holomorphically on the parameter.
S. K. Singh (1976)
Matematički Vesnik
Similarity:
Indrajit Lahiri, Shubhashish Das (2020)
Mathematica Bohemica
Similarity:
In the paper we consider the growth of entire solution of a nonlinear differential equation and improve some existing results.
L. S. O. Liverpool, Umaru Umar (1982)
Publications de l'Institut Mathématique
Similarity:
Indrajit Lahiri, Gautam Kumar Ghosh (2009)
Annales Polonici Mathematici
Similarity:
We study the uniqueness of entire functions which share a value or a function with their first and second derivatives.
Feng Lü, Junfeng Xu (2012)
Annales Polonici Mathematici
Similarity:
Applying the normal family theory and the theory of complex differential equations, we obtain a uniqueness theorem for entire functions that share a function with their first and second derivative, which generalizes several related results of G. Jank, E. Mues & L. Volkmann (1986), C. M. Chang & M. L. Fang (2002) and I. Lahiri & G. K. Ghosh (2009).