The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some generalizations of torsion-free Crawley groups”

A property of B 2 -groups

Kulumani M. Rangaswamy (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown, under ZFC, that a B 2 -group has the interesting property of being 0 -prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on B 2 -groups.

Butler groups and Shelah's Singular Compactness

Ladislav Bican (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A torsion-free group is a B 2 -group if and only if it has an axiom-3 family of decent subgroups such that each member of has such a family, too. Such a family is called S L 0 -family. Further, a version of Shelah’s Singular Compactness having a rather simple proof is presented. As a consequence, a short proof of a result [R1] stating that a torsion-free group B in a prebalanced and TEP exact sequence 0 K C B 0 is a B 2 -group provided K and C are so.

A result on B 1 -groups

Ladislav Bican, K. M. Rangaswamy (1995)

Rendiconti del Seminario Matematico della Università di Padova

Similarity: