Displaying similar documents to “When every flat ideal is projective”

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent: (ZIP 1) If the right anihilator X of a subset X of R is zero, then X1 = 0 for a finite subset X1 ⊆ X. (ZIP 2) If L is a left ideal and if L = 0, then L1 ...

Polynomial rings over Jacobson-Hilbert rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

A ring R is (in Vámos' terminology) if every subdirectly irreducible factor ring R/I is self-injective. rings include Noetherian rings, Morita rings and almost maximal valuation rings ([V1]). In [F3] we raised the question of whether a polynomial ring R[x] over a ring R is again . In this paper we show this is not the case.

Self-injective Von Neumann regular subrings and a theorem of Pere Menal.

Carl Faith (1992)

Publicacions Matemàtiques

Similarity:

This paper owes its origins to Pere Menal and his work on Von Neumann Regular (= VNR) rings, especially his work listed in the bibliography on when the tensor product K = A ⊗ B of two algebras over a field k are right self-injective (= SI) or VNR. Pere showed that then A and B both enjoy the same property, SI or VNR, and furthermore that either A and B are algebraic algebras over k (see [M]). This is connected with a lemma in the proof of the , namely a finite ring extension K = k[a,...

Embedding torsionless modules in projectives.

Carl Faith (1990)

Publicacions Matemàtiques

Similarity:

In this paper we study a condition right FGTF on a ring R, namely when all finitely generated torsionless right R-modules embed in a free module. We show that for a von Neuman regular (VNR) ring R the condition is equivalent to every matrix ring R is a Baer ring; and this is right-left symmetric. Furthermore, for any Utumi VNR, this can be strengthened: R is FGTF iff R is self-injective.