The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Countably z-compact spaces”

Remarks on absolutely star countable spaces

Yan-Kui Song (2013)

Open Mathematics

Similarity:

We prove the following statements: (1) every Tychonoff linked-Lindelöf (centered-Lindelöf, star countable) space can be represented as a closed subspace in a Tychonoff pseudocompact absolutely star countable space; (2) every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented as a closed G δ-subspace in a Hausdorff (regular, Tychonoff) absolutely star countable space; (3) there exists a pseudocompact absolutely star countable Tychonoff space having a regular closed...

Countable fan-tightness versus countable tightness

Aleksander V. Arhangel'skii, Angelo Bella (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Countable tightness is compared to the stronger notion of countable fan-tightness. In particular, we prove that countable tightness is equivalent to countable fan-tightness in countably compact regular spaces, and that countable fan-tightness is preserved by pseudo-open compact mappings. We also discuss the behaviour of countable tightness and of countable fan-tightness under the product operation.

First countable spaces without point-countable π-bases

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2007)

Fundamenta Mathematicae

Similarity:

We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by showing that ∙ there is a ZFC example of a first countable, 0-dimensional Hausdorff space with no point-countable π-base (in fact, the minimum order of a π-base of the space can be made arbitrarily large); ∙ if there is a κ-Suslin line then there is a first countable GO-space of cardinality κ⁺ in which the order of any π-base is at least κ; ∙ it is consistent to have a...