The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Graph Radiocoloring Concepts”

Solutions of Some L(2, 1)-Coloring Related Open Problems

Nibedita Mandal, Pratima Panigrahi (2016)

Discussiones Mathematicae Graph Theory

Similarity:

An L(2, 1)-coloring (or labeling) of a graph G is a vertex coloring f : V (G) → Z+ ∪ {0} such that |f(u) − f(v)| ≥ 2 for all edges uv of G, and |f(u)−f(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between vertices u and v in G. The span of an L(2, 1)-coloring is the maximum color (or label) assigned by it. The span of a graph G is the smallest integer λ such that there exists an L(2, 1)-coloring of G with span λ. An L(2, 1)-coloring of a graph with span equal to the span of...

2-Tone Colorings in Graph Products

Jennifer Loe, Danielle Middelbrooks, Ashley Morris, Kirsti Wash (2015)

Discussiones Mathematicae Graph Theory

Similarity:

A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic...

The cost chromatic number and hypergraph parameters

Gábor Bacsó, Zsolt Tuza (2006)

Discussiones Mathematicae Graph Theory

Similarity:

In a graph, by definition, the weight of a (proper) coloring with positive integers is the sum of the colors. The chromatic sum is the minimum weight, taken over all the proper colorings. The minimum number of colors in a coloring of minimum weight is the cost chromatic number or strength of the graph. We derive general upper bounds for the strength, in terms of a new parameter of representations by edge intersections of hypergraphs.

On the proper intervalization of colored caterpillar trees

Carme Àlvarez, Maria Serna (2009)

RAIRO - Theoretical Informatics and Applications

Similarity:

This paper studies the computational complexity of the problem (), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the and a graph layout problem the (). We show a dichotomy: the and the are NP-complete for colored caterpillars of hair length 2, while both problems are in P for colored caterpillars of hair length 2. For the hardness results we provide a reduction from the , while the...

Semi-definite positive programming relaxations for graph K 𝐧 -coloring in frequency assignment

Philippe Meurdesoif, Benoît Rottembourg (2001)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

In this paper we will describe a new class of coloring problems, arising from military frequency assignment, where we want to minimize the number of distinct n -uples of colors used to color a given set of n -complete-subgraphs of a graph. We will propose two relaxations based on Semi-Definite Programming models for graph and hypergraph coloring, to approximate those (generally) NP-hard problems, as well as a generalization of the works of Karger et al. for hypergraph coloring, to find...

Coloring subgraphs with restricted amounts of hues

Wayne Goddard, Robert Melville (2017)

Open Mathematics

Similarity:

We consider vertex colorings where the number of colors given to specified subgraphs is restricted. In particular, given some fixed graph F and some fixed set A of positive integers, we consider (not necessarily proper) colorings of the vertices of a graph G such that, for every copy of F in G, the number of colors it receives is in A. This generalizes proper colorings, defective coloring, and no-rainbow coloring, inter alia. In this paper we focus on the case that A is a singleton set....

On-line 𝓟-coloring of graphs

Piotr Borowiecki (2006)

Discussiones Mathematicae Graph Theory

Similarity:

For a given induced hereditary property 𝓟, a 𝓟-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property 𝓟. We consider the effectiveness of on-line 𝓟-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function of any stingy on-line 𝓟-coloring algorithm. In the...