Displaying similar documents to “A Bicriterion Steiner Tree Problem on Graph”

Approximation algorithms for metric tree cover and generalized tour and tree covers

Viet Hung Nguyen (2007)

RAIRO - Operations Research

Similarity:

Given a weighted undirected graph , a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of . Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...

Constrained Steiner trees in Halin graphs

Guangting Chen, Rainer E. Burkard (2003)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.

The color-balanced spanning tree problem

Štefan Berežný, Vladimír Lacko (2005)

Kybernetika

Similarity:

Suppose a graph G = ( V , E ) whose edges are partitioned into p disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number p of categories and present some polynomial algorithm.