Displaying similar documents to “Inserting measurable functions precisely”

Normal integrands and related classes of functions

Anna Kucia, Andrzej Nowak (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let D T × X , where T is a measurable space, and X a topological space. We study inclusions between three classes of extended real-valued functions on D which are upper semicontinuous in x and satisfy some measurability conditions.

A problem with almost everywhere equality

Piotr Niemiec (2012)

Annales Polonici Mathematici

Similarity:

A topological space Y is said to have (AEEP) if the following condition is satisfied: Whenever (X,) is a measurable space and f,g: X → Y are two measurable functions, then the set Δ(f,g) = x ∈ X: f(x) = g(x) is a member of . It is shown that a metrizable space Y has (AEEP) iff the cardinality of Y is not greater than 2 .