The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Point-distinguishing chromatic index of the union of paths”

Median of a graph with respect to edges

A.P. Santhakumaran (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For any vertex v and any edge e in a non-trivial connected graph G, the distance sum d(v) of v is d ( v ) = u V d ( v , u ) , the vertex-to-edge distance sum d₁(v) of v is d ( v ) = e E d ( v , e ) , the edge-to-vertex distance sum d₂(e) of e is d ( e ) = v V d ( e , v ) and the edge-to-edge distance sum d₃(e) of e is d ( e ) = f E d ( e , f ) . The set M(G) of all vertices v for which d(v) is minimum is the median of G; the set M₁(G) of all vertices v for which d₁(v) is minimum is the vertex-to-edge median of G; the set M₂(G) of all edges e for which d₂(e) is minimum is the edge-to-vertex...

The crossing number of the generalized Petersen graph P [ 3 k , k ]

Stanley Fiorini, John Baptist Gauci (2003)

Mathematica Bohemica

Similarity:

Guy and Harary (1967) have shown that, for k 3 , the graph P [ 2 k , k ] is homeomorphic to the Möbius ladder M 2 k , so that its crossing number is one; it is well known that P [ 2 k , 2 ] is planar. Exoo, Harary and Kabell (1981) have shown hat the crossing number of P [ 2 k + 1 , 2 ] is three, for k 2 . Fiorini (1986) and Richter and Salazar (2002) have shown that P [ 9 , 3 ] has crossing number two and that P [ 3 k , 3 ] has crossing number k , provided k 4 . We extend this result by showing that P [ 3 k , k ] also has crossing number k for all k 4 .

On detectable colorings of graphs

Henry Escuadro, Ping Zhang (2005)

Mathematica Bohemica

Similarity:

Let G be a connected graph of order n 3 and let c E ( G ) { 1 , 2 , ... , k } be a coloring of the edges of G (where adjacent edges may be colored the same). For each vertex v of G , the color code of v with respect to c is the k -tuple c ( v ) = ( a 1 , a 2 , , a k ) , where a i is the number of edges incident with v that are colored i ( 1 i k ). The coloring c is detectable if distinct vertices have distinct color codes. The detection number det ( G ) of G is the minimum positive integer k for which G has a detectable k -coloring. We establish a formula for the...

On k-intersection edge colourings

Rahul Muthu, N. Narayanan, C.R. Subramanian (2009)

Discussiones Mathematicae Graph Theory

Similarity:

We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ’ₖ(G). Let fₖ be defined by f ( Δ ) = m a x G : Δ ( G ) = Δ χ ' ( G ) . We show that fₖ(Δ) = Θ(Δ²/k). We also discuss some open problems.