Displaying similar documents to “On extremal mappings in complex ellipsoids”

Differential geometry of grassmannians and the Plücker map

Sasha Anan’in, Carlos Grossi (2012)

Open Mathematics

Similarity:

Using the Plücker map between grassmannians, we study basic aspects of classic grassmannian geometries. For ‘hyperbolic’ grassmannian geometries, we prove some facts (for instance, that the Plücker map is a minimal isometric embedding) that were previously known in the ‘elliptic’ case.

Uniformly convex functions II

Wancang Ma, David Minda (1993)

Annales Polonici Mathematici

Similarity:

Recently, A. W. Goodman introduced the class UCV of normalized uniformly convex functions. We present some sharp coefficient bounds for functions f(z) = z + a₂z² + a₃z³ + ... ∈ UCV and their inverses f - 1 ( w ) = w + d w ² + d w ³ + . . . . The series expansion for f - 1 ( w ) converges when | w | < ϱ f , where 0 < ϱ f depends on f. The sharp bounds on | a n | and all extremal functions were known for n = 2 and 3; the extremal functions consist of a certain function k ∈ UCV and its rotations. We obtain the sharp bounds on | a n | and all extremal functions for...

A note on rapid convergence of approximate solutions for second order periodic boundary value problems

Rahmat A. Khan, Bashir Ahmad (2005)

Archivum Mathematicum

Similarity:

In this paper, we develop a generalized quasilinearization technique for a nonlinear second order periodic boundary value problem and obtain a sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Then we improve the convergence of the sequence of approximate solutions by establishing the convergence of order k ( k 2 ) .