On nonhomogeneous -harmonic equations and 1-harmonic equations.
Lin, En-Bing (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
Lin, En-Bing (2010)
Journal of Inequalities and Applications [electronic only]
Similarity:
B. Johnson (1973)
Studia Mathematica
Similarity:
Petrunin, Anton (2003)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
S. Hartman (1975)
Colloquium Mathematicae
Similarity:
S. Simić (1979)
Matematički Vesnik
Similarity:
Essén, Matts
Similarity:
A. Bonilla (2000)
Colloquium Mathematicae
Similarity:
We prove that, if μ>0, then there exists a linear manifold M of harmonic functions in which is dense in the space of all harmonic functions in and lim‖x‖→∞ x ∈ S ‖x‖μDαv(x) = 0 for every v ∈ M and multi-index α, where S denotes any hyperplane strip. Moreover, every nonnull function in M is universal. In particular, if μ ≥ N+1, then every function v ∈ M satisfies ∫H vdλ =0 for every (N-1)-dimensional hyperplane H, where λ denotes the (N-1)-dimensional Lebesgue measure. On the other...
Jevtić, M. (1995)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Course, Neil (2007)
The New York Journal of Mathematics [electronic only]
Similarity: