Displaying similar documents to “On an extremal problem in graph theory”

An advance in infinite graph models for the analysis of transportation networks

Martín Cera, Eugenio M. Fedriani (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper extends to infinite graphs the most general extremal issues, which are problems of determining the maximum number of edges of a graph not containing a given subgraph. It also relates the new results with the corresponding situations for the finite case. In particular, concepts from ‘finite' graph theory, like the average degree and the extremal number, are generalized and computed for some specific cases. Finally, some applications of infinite graphs to the transportation...

Pₘ-saturated bipartite graphs with minimum size

Aneta Dudek, A. Paweł Wojda (2004)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G is said to be H-saturated if G is H-free i.e., (G has no subgraph isomorphic to H) and adding any new edge to G creates a copy of H in G. In 1986 L. Kászonyi and Zs. Tuza considered the following problem: for given m and n find the minimum size sat(n;Pₘ) of Pₘ-saturated graph of order n. They gave the number sat(n;Pₘ) for n big enough. We deal with similar problem for bipartite graphs.

On the Maximum and Minimum Sizes of a Graph with Givenk-Connectivity

Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

The concept of k-connectivity κk(G), introduced by Chartrand in 1984, is a generalization of the cut-version of the classical connectivity. For an integer k ≥ 2, the k-connectivity of a connected graph G with order n ≥ k is the smallest number of vertices whose removal from G produces a graph with at least k components or a graph with fewer than k vertices. In this paper, we get a sharp upper bound for the size of G with κk(G) = t, where 1 ≤ t ≤ n − k and k ≥ 3; moreover, the unique...