Displaying similar documents to “Minimax estimation of a cumulative distribution function for a special loss function”

Two-point priors and minimax estimation of a bounded parameter under convex loss

Agata Boratyńska (2005)

Applicationes Mathematicae

Similarity:

The problem of minimax estimation of a parameter θ when θ is restricted to a finite interval [θ₀,θ₀+m] is studied. The case of a convex loss function is considered. Sufficient conditions for existence of a minimax estimator which is a Bayes estimator with respect to a prior concentrated in two points θ₀ and θ₀+m are obtained. An example is presented.

The LASSO estimator: Distributional properties

Rakshith Jagannath, Neelesh S. Upadhye (2018)

Kybernetika

Similarity:

The least absolute shrinkage and selection operator (LASSO) is a popular technique for simultaneous estimation and model selection. There have been a lot of studies on the large sample asymptotic distributional properties of the LASSO estimator, but it is also well-known that the asymptotic results can give a wrong picture of the LASSO estimator's actual finite-sample behaviour. The finite sample distribution of the LASSO estimator has been previously studied for the special case of...

Estimating quantiles with Linex loss function. Applications to VaR estimation

Ryszard Zieliński (2005)

Applicationes Mathematicae

Similarity:

Sometimes, e.g. in the context of estimating VaR (Value at Risk), underestimating a quantile is less desirable than overestimating it, which suggests measuring the error of estimation by an asymmetric loss function. As a loss function when estimating a parameter θ by an estimator T we take the well known Linex function exp{α(T-θ)} - α(T-θ) - 1. To estimate the quantile of order q ∈ (0,1) of a normal distribution N(μ,σ), we construct an optimal estimator in the class of all estimators...

A review of the results on the Stein approach for estimators improvement.

Vassiliy G. Voinov, Mikhail S. Nikulin (1995)

Qüestiió

Similarity:

Since 1956, a large number of papers have been devoted to Stein's technique of obtaining improved estimators of parameters, for several statistical models. We give a brief review of these papers, emphasizing those aspects which are interesting from the point of view of the theory of unbiased estimation.

Nonparametric bivariate estimation for successive survival times.

Carles Serrat, Guadalupe Gómez (2007)

SORT

Similarity:

Several aspects of the analysis of two successive survival times are considered. All the analyses take into account the dependent censoring on the second time induced by the first. Three nonparametric methods are described, implemented and applied to the data coming from a multicentre clinical trial for HIV-infected patients. Visser's and Wang and Wells methods propose an estimator for the bivariate survival function while Gómez and Serrat's method presents a conditional approach for...

Theory of parameter estimation

Ryszard Zieliński (1997)

Banach Center Publications

Similarity:

0. Introduction and summary. The analysis of data from the gravitational-wave detectors that are currently under construction in several countries will be a challenging problem. The reason is that gravitational-vawe signals are expected to be extremely weak and often very rare. Therefore it will be of great importance to implement optimal statistical methods to extract all possible information about the signals from the noisy data sets. Careful statistical analysis based on correct application...

Posterior regret Γ-minimax estimation in a normal model with asymmetric loss function

Agata Boratyńska (2002)

Applicationes Mathematicae

Similarity:

The problem of posterior regret Γ-minimax estimation under LINEX loss function is considered. A general form of posterior regret Γ-minimax estimators is presented and it is applied to a normal model with two classes of priors. A situation when the posterior regret Γ-minimax estimator, the most stable estimator and the conditional Γ-minimax estimator coincide is presented.